
BERYLLS STRATEGY ADVISORS

HOW NOT TO MESS UP
SOFTWARE PROJECTS

Agenda

Software is the key component driving innovation in modern cars, from electric
engines to increasing levels of vehicle automation and infotainment systems. Yet
while it is pulling the industry forward, software is also increasingly a source of
problems for OEMs. Carmakers are being forced to recall vehicles already on the
road, or postpone the start of production and sales, due to issues with new soft-
ware.

Last year, one German OEM had to issue a recall affecting 1.3 million vehicles in
the US and 2.6 million vehicles in China, due to defective emergency call software.
A second German OEM had to stop production of one of its highest volume mo-
dels for a few weeks due to software problems in 2019, again in the mandatory
emergency call function.

Berylls’ five-step software excellence framework enables OEMs and
suppliers to combine their automotive expertise with best practices
from Big Tech

INTRODUCTION

AGENDA
 2 Introduction

 4 Program Management

 5 Project Management

 7 Engineering

 9 Testing and integration

 12 Culture

 15 Key Takeaways

3

Introduction

S
O

FT
W

A
R

E
P

R
O

JE
C

T
EX

C
EL

LE
N

C
E

Such problems don’t just impact carmakers’ reputations for reliability and custo-
mer service - we estimate that for a premium model, the cost of a single week of
lost production around the launch date could range from €34 million to as much
as €101 million (Figure 1).

To avoid such additional costs, and to successfully tackle the challenges raised
by future projects, we have developed a software project excellence framework
around five essential areas for action (Figure 2):

LOSS OF CONTRIBUTION
MARGIN PER LOST
PRODUCTION WEEK FOR
PREMIUM VEHICLES

FIGURE 1

FIVE ESSENTIAL AREAS FOR ACTION
FIGURE 2

Program Management

From Day One of a software develop-
ment program, carmakers must com-
municate and align in a transparent way
with all stakeholders involved. This in-
cludes suppliers, who should be treated
as partners on the program rather than
simply service or component providers.

The vital first step is to be clear from the
outset about the aims (the ‘what’) of the
program and each partner’s contribu-
tion. We have noticed that this step is
especially crucial in the development of
innovative technologies, such as auto-
nomous driving or augmented reality
displays. Similarly, in joint projects bet-
ween Big Tech and automotive players
we have observed that too often the fo-
cus becomes the partnership itself, rat-
her than the joint value proposition they
are developing, and the contribution of
each partner. Fix this by transparently
defining every party’s contribution and
the joint target value proposition.

With clear goals in place, OEMs must
then be realistic about the organiza-
tion’s capabilities in software develop-
ment and integration. If the company
wants to build something truly complex
and new, it needs a clearly defined and
well-functioning product development
organization. If the OEM doesn’t have
one, it needs to start with a smaller de-
velopment project first and build up the
organization’s capabilities – there is no
point entering a Formula One race with
a family car and then blaming the driver
for not winning.

This doesn’t mean thinking small – par-
ticularly in this period of industry trans-
formation, OEMs should be visionary ab-
out what they want to achieve. However,
it’s important to be realistic about what
tasks are better assigned to partners or
outside suppliers, and the amount of
time it will take to build up the organiza-
tion’s software program experience.

Without aligning a clear goal within the organization and all partners
even the best teams will not win the race

PROGRAM MANAGEMENT

5

Project Management

S
O

FT
W

A
R

E
P

R
O

JE
C

T
EX

C
EL

LE
N

C
E

The automotive industry has perfected
lean management in production to avo-
id unnecessary waste. Happily, lean prin-
ciples also apply to software develop-
ment, where researchers have identified
seven key areas of waste1 (Figure 3).

Similar to the teachings of lean, these
principles can appear obvious at first.

However, based on our global experien-
ce working on more than 50 task force
and project recovery assignments, we
have seen that they are often neglec-
ted, especially in heated project situati-
ons. Focusing on these areas from the
outset will help keep projects on track.

Applying lean principles to software development and tracing everything back to
business requirements helps to avoid blind efforts and soaring expenses

PROJECT MANAGEMENT

SEVEN AREAS OF WASTE IN SOFTWARE DEVELOPMENT
FIGURE 3

1 Poppendieck, Lean Software Development: An Agile Toolkit (2006)

Project Management

Unnecessary features | When
it comes to software projects,

carmakers should apply the lesson le-
arned from building supercars: cus-
tomers value premium quality over a
huge array of features. To keep soft-
ware projects lean, project managers
and stakeholders should set a clear
scope and complete each element be-
fore advancing to the next stage. They
must not let scope creep happen by
adding unnecessary features or start
changing the task list as the team works
through it.

Task switching | To maximize
the time software engineers

spend on value-adding activities, OEMs
should automate processes wherever
possible. Time is also lost to task swit-
ching when people have more than one
role; for example, a combined lead de-
veloper and product owner (PO). The
PO has the best overarching unders-
tanding of what the product should
look like, and is responsible for connec-
ting with all stakeholders. They should
focus on that exclusively.

Waiting | To foster a quick de-
cision culture, rigid hierarchies

must go. Instead, teams should be emp-
owered to take decisions, test the re-
sults, and pivot accordingly. Unlike hard-
ware, software development is iterative
and benefits from early and continuous
feedback. When changing tack, data
beats opinions.

Partially done work | Maintain
a clean backlog with a clear fo-

cus and keep the details of the backlog
items up to date. Items no longer nee-
ded should be removed or deprioriti-
zed – do not create zombie tasks.

Hand-offs | Fewer unnecessary
hand-offs between suppliers,

partners, and the OEM will cut waiting
times and increase product quality due
to the prevention of know-how loss in
transmission. To achieve this outcome,
trust suppliers and partners and hand
over some control. Give them room to
innovate and deliver meaningful incre-
ments of change.

Unnecessary processes | The
automotive industry loves pro-

cesses (and we will see why that is good
in some cases later in this report). Ho-
wever, to make software projects lean,
companies must adopt a crucial part
of the Agile Manifesto: Individuals and
interactions before processes2. This
means trusting their employees and
fostering open communication.

Beyond these key areas where time, ef-
fort, and money are wasted, there are
two other common mistakes that
OEMs need to guard against in their
software programs:

2 Beck et. al. 2001, Agile Manifesto (2001)

7

Engineering

S
O

FT
W

A
R

E
P

R
O

JE
C

T
EX

C
EL

LE
N

C
E

Firstly, spending years of manpower
working on the perfect set of require-
ments for the software before getting
started. Instead, companies should fo-
cus on the most valuable capabilities
that the feature must include to meet
customer needs and regulatory compli-
ance. From there, continuously refine
the product by breaking down the re-
quirements from the overall capability
level into elements that can be develo-
ped by software teams.

Secondly, as business requirements are
turned into technical requirements and
then features are developed and tested,
testing results should be linked back to
the original business requirement from
the earliest stages. This ensures features
are fulfilling the brief. Maintaining this le-
vel of traceability might seem daunting,
particularly when working in an agile way
– but it ensures that the correct product
is being developed.

Don’t be too proud to learn from the best in software engineering but maintain
what made you the best in automotive engineering

ENGINEERING

BEST PRACTICES
FIGURE 4

Engineering

These high-quality practices for deve-
loping code are paramount. By looking
at Big Tech companies, for example
Google3 or Microsoft4 , we noticed how
deliberate these firms are about mea-
sures such as code reviews or testing
and design guidelines. By comparison,
in the automotive sector, we see that
some engineers follow best practices,
while others muddle around in the
code without reviewing their changes
with peers. It is worth spending time en-
suring the organization has such strong
quality measures for software in place.

Automotive engineering standards
matter too – software teams should
not set them aside just because they
are “old”. The basic concepts are still
needed today:
» Use ASPICE (Automotive Software

Performance Improvement and Ca-
pability Determination) standards
to break down requirements and
build up the solution while integ-
rating and testing along the way,
although the change or the feature
that is run through the process
might be smaller compared to clas-
sic software development V-cycles.

» Safety standards such as ISO 26262
are still paramount – not only for
certification but also for society
and customers.

» Pay attention from the beginning
to compliance in general (legal,
environmental, safety, security)
to ensure the product has built-in
compliance, rather than looking the
other way and hoping any problems
will magically solve themselves.

3 https://google.github.io/eng-practices/review/
4 https://microsoft.github.io/code-with-engineering-playbook/

While program or project management
standards are important, many auto-
motive software projects also fall short
simply because of poor engineering
quality. To improve performance in this
area, there is no need to reinvent the
wheel. There are well-established best
practices to draw on from both soft-
ware and automotive engineering.

In software, these include (Figure 4):

» Establish an automated, reliable
continuous integration/continuous
delivery (CI/CD) pipeline from the
start of a program, to ensure high-
quality code and fast feedback to
developers, allowing them to work
at speed.

» Agree on a common process and
tool for code reviews. Focus not
only on the design, functionality,
and complexity of the code but
also on readability, by adhering to
coding and naming conventions
and the amount of comments nee-
ded. This creates quality code that
will be reused and maintained long
into the future.

» Across all stages, from source
repository down to code, docu-
mentation should be treated as
being as important as the code
itself. This is because a clear ‘paper
trail’ greatly affects reusability,
comprehensibility, and resilience
when there are staff changes.

9

Testing and integration

S
O

FT
W

A
R

E
P

R
O

JE
C

T
EX

C
EL

LE
N

C
E

Classic gated approaches designed for hardware will not work with software.
Reliable risk reduction only comes with early end-to-end design validations and
continuous testing and integrating from the very beginning

TESTING AND INTEGRATION

one of the intrinsic values of agile. Ac-
ceptance criteria for test results must
be concrete and measurable, and tasks
should not be initiated without them.

An incremental, agile approach allows
for quick validation of design decisi-
ons - essential for the development of
a complex system like car software. But
it comes at a cost. Only parts of test
routines and test data are reusable, so
each new test requires resources. On
the other hand, waiting for the system
as a whole to be finished does not work
either, since incremental development
and test cycles are essential to reach a
feasible product design in the first place.

Testing and integration are essential
for the success of software products
– they are an inherent part of the de-
velopment and not something to be
added on late in the process. As a re-
sult, procedures need to be set up right
at the beginning of the project. This is
well known now, but few projects stick
to the rule in reality. Buck the trend and
just do it.

The reasons are clear: testing needs to
be carried out end-to-end to get feed-
back on every iteration of the solution.
That means there must be measurable
acceptance criteria for each incremen-
tal change and a test pyramid with pro-
per foundations. Proper testing starts
at the detailed level, with each test level
including more and more parts of the
system, until system-level validation is
carried out.

Working to agile principles is no rea-
son for omitting any of the necessary
testing levels – in fact, built-in quality is

Testing and integration

GATED APPROACH TO DEVELOPMENT & TEST
FIGURE 5

simply doesn’t work when there are no
pre-existing system designs to draw on,
as there are for example with engines,
and without testing as they go along. If
the organization postpones real design
validations until late in the process, fai-
lures will be prohibitively costly and will
endanger production (SOP) deadlines.
The best option is to build proofs of
concept (POCs) and fail early, then learn
and move on to a better solution.

On the other hand, building an autono-
mous vehicle without thinking of safety
and compliance early in the process,

In the case of automotive software, the
“classic” waterfall software testing ap-
proach with fixed maturity gates and
architecture freezes does not apply.
The same holds true for the selective
approach to agile taken by some auto-
motive companies, which only adopt
parts of the agile framework. To work
out, elements of both approaches must
be included and managed, particularly
with safety-critical software.

Take an autonomous vehicle as an
example. The idea that an OEM could
design a complete system from scratch

S
O

FT
W

A
R

E
P

R
O

JE
C

T
EX

C
EL

LE
N

C
E

Testing and integration

11

FUNNEL APPROACH TO DEVELOPMENT & TEST

design becomes more clearly defined,
confidence in the quality of the product
increases, as a more extensive base of
test data is available.

It’s possible to make big changes late in
product development, rendering parts
of the testing process obsolete. Howe-
ver, the cost of doing so can and must
be weighed against the possible bene-
fit of making the change. Deciding on
changes for a maturing product beco-
mes increasingly tough and needs full
management buy-in.

and the time needed to achieve it, will
lead to fiddling around with the soft-
ware indefinitely without it ever rea-
ching the maturity needed to get a car
on the road.

Successfully managing these two dif-
ferent approaches means using them
together to narrow down the amount
of uncertainty in the project, as Figu-
re 5 below shows. During product de-
velopment, decisions on the shape
and features of the product are taken
iteratively and sometimes reversed,
starting with the biggest ones. As the

Software is quickly becoming the dri-
ving force for automotive innovation,
but long-established carmakers were
not designed to manage software pro-
jects. As a result, important cultural and

practical obstacles stand in the way of
doing so successfully. Culturally, auto-
motive companies tend to have very
hierarchical structures with only a few
senior managers taking most of the im-

Becoming a software company is an arduous process of cultural change
including letting go of selected core believes – but the gains outweigh
the pain manifold

CULTURE

13

S
O

FT
W

A
R

E
P

R
O

JE
C

T
EX

C
EL

LE
N

C
E

portant decisions. Those managers and
their management practices are in ge-
neral the product of years of experien-
ce developing automotive hardware.

In practice, this means a small group of
people with only limited knowledge of
the actual subject will take most of the
important decisions on a software pro-
gram. This is a recipe that is doomed to
fail, often because they simply lack the
necessary understanding of how soft-
ware is different.

Instead, successful software develop-

ment happens in a culture of problem-
solving through collaboration, rather
than penalizing people for failure. An
essential part of creating such a culture
is the belief that team members are
only falling short on projects due to the
inherent complications of an uncertain
process, rather than because of perso-
nal unwillingness or lack of motivation.

If problems occur, it is essential not to
heap blame on teams and turn up the
pressure through tight control and re-
porting. Instead, software program and
project leaders should focus on hel-

Culture

Culture

ping to solve the problem with all rele-
vant resources. Pulling struggling team
members into never-ending processes
of reporting and top-down control only
decreases their problem-solving ability.

OEM software task force managers
brought in to turn around struggling
programs tell us that the efficiency of
their teams increased significantly after
bringing an external party on board to
manage the day-to-day work of the task
force, and let developers focus on fixing
errors.

Managing complexity
In addition, in a more complex and vo-
latile automotive market, projects often
need teams with different work ap-
proaches, different cultures, and diffe-
rent languages to work together across
several time zones. This is not an easy
task and requires substantial knowled-
ge and experience of inter-cultural wor-
king to make it a success. OEMs should
not ignore this fact in their project and
organizational setup, because without
careful consideration and management
from the outset, a lack of mutual cul-
tural understanding within teams will
slow projects down significantly and in-
crease tensions and frustration.

We were able to overcome the issues in
software development in one example
involving a task force made up of two
European software players, by co-lo-
cating the development teams for two
months to conquer their cultural diffi-
culties. After this period of team-buil-
ding and co-development, the teams
maintained their newly found increase
in productivity, even after returning to
work at their home locations.

Overall, the culture and people in an or-
ganization must match the desired way
of working. An all-out agile approach
with teams made up of automotive old
hands trained on hardware is likely to
cause some friction. In many cases, a
radical approach just does not work
with the organization. Making state-
ments like “from today on, we act as
one team and do everything differently”
will not make it happen at once.

Instead, OEMs should be realistic about
where the organization’s people and cul-
ture are currently, and factor in substan-
tial time for change if the current state
does not yet match their ambitions.

15

S
O

FT
W

A
R

E
P

R
O

JE
C

T
EX

C
EL

LE
N

C
E

KEY TAKEAWAYS
By addressing the five areas for action in our software
excellence framework, automotive companies can build up
a holistic approach to:

1 Give teams clear guardrails and goals on what to achieve, always
promoting clarity, and making sure that all their partners are onside.
Then trust employees and partners with the “how” of the solution, and
that they will all pull in the same direction to achieve the best possible
result. When it comes to software, empowerment and employee free-
dom create better, faster results. When it is essential to pivot, organi-
zations should do it, while being clear to everyone involved about the
changes to their expectations for the project.

2 Adapt their management practices at both program and project le-
vel to accommodate working with software rather than hardware. The
key change is enabling decentralized, quick decisions and providing
problem-solving assistance, replacing rigid centralized processes and
excessive top-down control.

3 Combine their extensive knowledge of automotive best practices
with the leading software best practices learned from the Big Tech
companies. Organizations should treat their software as what it might
become: THE CENTERPIECE OF THEIR PRODUCT.

BERYLLS STRATEGY ADVISORS

YOUR CONTACT PERSONS

T +49-89-710 410 40-0
info@berylls.com

Sebastian Böswald
sebastian.boeswald@berylls.com
T +49 151 41 88 73 18

Timo Kronen
timo.kronen@berylls.com
T +49 170 22 38 992

Martin Ruchti
martin.ruchti@berylls.com
T +49 160 96 24 34 52

